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Abstract—Several forms of general solution for torsion-free axi-symmetric deformation have been pro-
posed to the Lamé equation of elastic equilibrium. Most of these, excepting Love's biharmonic solution are
generic to the Papkovich solution in terms of four harmonic functions for the general three dimensional
case. In this work a two harmonic function form for the axi-symmetric case is proposed which is different
to that of Boussinesq.

Clearly the several forms of solution are related and this paper sets out details of these relationships and

equivalences in such a way that the consequences of the varying forms and their completeness is more fully
understood.

1. INTRODUCTION

The solution given by Papkovich[l] to Lamé’s equation for the equilibrium of a three
dimensional elastic body in the Cartesian coordinate system (x, y, z) is written as

Uy, =abd, —% (xD, + yb, + 20, + By),
U, = a0, —aiy (x®, + yb, + 20, + By),
U, = a®, -aiz(xcb, +y®, + 20, + dy), (1.1

where (U,, U,, U,) is the displacement vector, a denotes 4(1 — ») with » being the Poisson ratio,
and ¢,, ¢,, ¢,, &, are four harmonic functions.

When this solution is applied to the case of torsion-free axi-symmetric deformations, with z
being the axis of symmetry, ®, and &, can be omitted, as shown by [2], giving the well known
Boussinesq solution[3], with ®,, ¥, being functions of only r and z. This solution is widely used
in elasticity theory due to its generality, completeness and simplicity.

On the other hand, when the conditions for the omission of ¢, are satisfied (see [2]), the
solution for torsion-free axi-symmetric deformations assumes the following form.

u(r, 2) = aA(r, 2, 8) —5"—’ [FA(r, 2, )+ B(r, 2, 8)), (1.22)
o(r, 2) = aC(r, 2, 6) - } 5"5 [rA(r, z, 8)+ B(r, 2, 8)) =0, (1.2b)
wir, z) = -5"; [FA(r, 2, 6) + B(r, 2, 0)), (1.20)

where B(r, z, 8) is the cylindrical form of ®q(x, y, 2); A(r, z, 8) and C(r, z, 8) are given by
d.(x, y, 2)+iD,(x, y, 2) = [A(r, 2, 0) +iC(r, 2, 0)] €, (1.3)

and (u, v, w) is the displacement vector in cylindrical coordinates.
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The difficulty involved in the use of this form of solution is the dependence of A, B and C
on 6, a point not noted by previous authors on this subject.
In this paper it will be proved that there exist other functions ao(r, z) and by(r, z) such that

u(r,z) = aayr, z) _air [rao(r, z) + by(r, 2)], (1.4a)
v(r,2)=0, (1.4b)
w(r, z)=- % [rao(r, 2) + by(r, 2)], (1.4¢c)
Viay(r, 2) = ﬂ:rz) (1.5a)
V2by(r, z) = 0. (1.5b)

This solution is known as an alternative form of Boussinesq-Papkovich solution to the
torsion-free axi-symmetric problem, and has been used by Lur’e in his book[5]. But no
convincing derivation of this solution from the general solution has not previously been
systematically incorporated into Papkovich’s general solution.

In the second part of this paper, the above solution for displacements is proved, under
appropriate conditions, to be equivalent to the well known Boussinesq solution. A variation of
the present solution is also mentioned, this variation expresses displacements in terms of two
harmonic functions, and is very similar to the solution used by Sadowsky in [6). To complete
the cycle of inter-relationship between various solutions to the Lamé equations the connection
between the Boussinesq harmonic function form and Love’s biharmonic form is subsequently
presented.

Thus, to the end of this paper, the inter-connections between various solutions to the
problem of torsion-free axi-symmetric deformations are apparent. Hence the choice for one of
these methods to a particular application in a boundary value problem depends only on its
convenience and completeness relative to the others.

2. DISPLACEMENTS IN TERMS OF TWO FUNCTIONS, INDEPENDENT OF ¢
The application of Papkovich solution of torsion-free axi-symmetric deformations gives rise
to (1.2), with A(r, z, 8) and C(r, z, 8) defined by (1.3).
Since &, and ®, are harmonic, A and C must satisfy

V(A+iC)e® =0,
or

A 24C_ _C,20A_
VA-Z-p3=0 VC-a+pgg=0

Using (1.2), the above two equations, together with the equation for B(r, z, 8), can be written
as,

VA A2

(r.2, 0)—;2+;1—’3W(rA+B), (2.1a)
V2B(r,z,6)=0, (2.1b)
vC(r 2 0)=-5-25 2.10)

Using (1.2¢), (1.2a) and (1.2b), in this order, it is straightforward to prove that

a_ao' (rA + B) = function of (r, 8),
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A .
i function of (7, 8),

rC = function of (r, 8).

And, as a result,

B :
g = function of (r, 6).

Hence, A, B and C can be rewritten as

Alr, 2,8y = a(r, ) + air, 2), (2.2a)
B(r, z, 8) = b(r, 8) + bo(r, 2), (2.2b)
C(r,z,0)= -} c(r, 8). (2.2¢)

By the use of (1.2) and (2.2) it can be shown that

ac(r, §) _ da(r, 6)

ar a8

This equation establishes the existence of a potential function ¢(r, 8) defined by
{(r.6)
&(r, 6) = j (a7, 8) dr + c(r, 8) 6,
{ro, 59}

where ry, 6, are arbitrary reference values, ¢(r, 8) has the property of

a(r, 0) _
ar = a(r, 8)9

and
ag(r, 6) _
BT c(r, 8).

With this newly defined function ¢, the functions A and C can be rewritten as

A(r,2,68)= %@ +ay(r, 2), (2.3a)
_13¢(r, 0)
C(", 2, 9) - r 26 (2.33)

Using (2.3a), (2.3b) and (2.2b), v(7, z) can now be written as
o(r, 2) -add(n8 134 (,M+ b(r, g)) =0,

r a6 r a8 ar

This equation allows b(r, 8) to be related to ¢(r, 8) by
— .a_ié— =
a¢ r ar b f (r ))
where f(r) is a function of r only. Thus B(r, z, §) can now be written as

B(r,2,0) = a(r, 0)- r B0 gy 4 b, 2)

§8 Vol. 1§, No. §.F
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or

B(r. 2, 8) = ad(r, ) — ra"’(" 91 bir 2), (2.3b)

with by(r, z) equal to the sum of f(r) and by(r, 2).
Equations (2.3) allow displacements to be written as,

u(r, 2y = aa\r, z) - % (ra\(r, 2) + by(r, 2)) (2.4a)
v{r,2)=0 (2.4b)
wir, 2) = —3"; (ra(r, 2)+ by(r, 2)). 2.4¢)

It should be noted that no attempt has been made to demonstrate that a,(r, z) and by(r, z) are
harmonic.

3. DISPLACEMENTS IN TERMS OF ONE HARMONIC AND ONE HARMONIC RELATED
FUNCTION

Equations (2.1c) and (2.3¢) give,

13¢(r,0)\, 1 d¢(r,8) . 2 9 (13¢(r, )\ _
Vz(r ; ) 70 +r&r( 20 )'0’
or

O wm =
an &(r,8)=0.

This implies
Vi(r, 8) = h(r),

where h(r) is a function of only .
Another function ¢(r, 8), which is harmonic, can be defined by

Ylr, 8) = ¢(r, 0}—’[’%1' rh(r)drdr. 3.0
rg L]

Hence, A, B and C can be rewritten as

A(rz,0)= éﬂa%a + ap(r, 2), (3.22)

B(r, 2, 6) = ay(r, §) - r 0 a"’(’ a)+ bo(r. 2), (3.2b)
_134(r,6)

C(r' ! o) r ao ) (3.2(:)

where the functions ao(r, z), b7, z) are given by

ar, z)= -} f’ rh{n dr+a(r,2)
and

bylr, z)=afr%]’ rh(r)dr—f’ rhi{rydr+ by(r, 2).

]

Displacements can now be written in the desired form (1.4).
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Using (2.1a), (2.1b) together with (3.2¢), (3.2b) it can be shown that
Vzao—%i— (56; azw) =0,
2 2, 13 2
Vibe + [av ¢~;§(PV dl)] =0,

Knowing that  is harmonic, the above equations can be written in the form of (1.5). Thus it
can be now stated that:

The displacements in torsion-free axi-symmetric deformations are expressible by (1.4) with
alr,z) and by(r, z) satisfying (1.5), when the conditions for the omission of ®, (see [2]) in
Papkovich's general solution are satisfied.

4. ALTERNATIVE FORM OF (1.4) AND (1.5)

If displacements are given by the eqns (1.4) and (1.5), then a function d(r, z) can be defined
by

d(r,z)= f,ﬂo(’, z)dr,

where r, is an arbitrary reference value. Hence

I —y2dd_19d
ar Y din)=Vor-a

= Vay~ % =q.
This leads to
V2d(r, z) = p(2).
Define the function dy(r, z) by

dyr,z)=d(r,z)~ f N p(2)dz dz,
Iy 42y

where z, is an arbitrary reference value.

Then
-_9(_ 3dy
u= ar( ado+ r 5% +bo), @.1)
.8 ( 9do
wWET% (r ar +b°)’
with
Vidy =0,
Vb, =0, 42

On the other hand, if displacements are given by (4.1) and (4.2), by defining
ayr,z) = 2 dy(r, 2)
] - ar 7, H F4

then displacements are also expressible by (1.4) and (1.5).
Thus (4.1) and (4.2) are the equivalent representation of (1.4) and (1.5).
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A trivial variation of (4.1) and (4.2) gives the following form

w=L(riy,), w-—[4<1—v)¢|+rﬁ+wl]

with
V=0, V=

This latter form is thought to have been used by Sadowsky in his unpublished lecture
notes [6).

5. RELATION BETWEEN (4.1) AND (4.2) AND BOUSSINESQ SOLUTION
Assuming that displacements are given by (4.1) and (4.2), define D(r, z) and E(r, z) by

D(r,z)= rado +2z a‘;jzo+bo—ado,

E(r, z)=—%.

Then, by the use of the above equations together with (4.1), displacements can be written as
u(r,z2)= —i(zE+ D)
’ ar ’

w(r, )= aE—:%(zE+D). 6.1y

Using (4.2), it is only routine calculation to show that D and E are harmonic, i.e.

V2D(r, z) =0. (5.2a)
VE(r,2)=0. (3.2b)

On the other hand, if displacements are given by (5.1) and (5.2) then by defining

d(r,2)= —f E(r,2)dz,
it can be shown that, '
% V2d(r, z) = 0, by virtue of (5.2b),

or
Vid(r, 2) = q(r).
Define another function

dy(r, z) = d(r, z)—f %f rq(r)drdr

n F

which is harmonic, and another one l
ady | _ ady

by(r, z) = D(r, z) + ady + r—a—r—+z 7

which is also harmonic by (5.2) and the harmonicity of ds.
Using (5.1), it is trivial to show that displacements are also expressible by (4.1), and since d,
and b, are harmonic, (4.2) is satisfied.

6. RELATION BETWEEN BOUSSINESQ SOLUTION AND LOVE SOLUTION
Assuming that displacements are given by (5.1) and (5.2), define xo by
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Xolr, 2) = f : (zE+ D) dz,

then it can be shown that
d 3E
-(;—Z— V2X0 =2 '6—2’.
The above equation implies
VZXQ =2E+ s(r),
where s(r) is a function of only r.
Define another function,

X”XO‘IP'I'_‘" rs(rydrdr.
'l’ 4]

Then y has the property of
a9z
and
V2x =2E.

Hence displacements are given, using the above two equations in conjunction with (5.1), by

2
u=-3X
aroz
82
w=2Al~)Vix -4 ©.1)

Since E is harmonic, the equation relating y and E gives
V=0 6.2)

On the other hand, when displacements are given by (6.1) and (6.2), the functions D and E
defined by

1 0 _1
E—zvzx, D_az 2zV’x,

can obviously satisfy (5.1). They are also harmonic since y is biharmonic.

7. RELATIVE USEFULNESS OF DIFFERENT APPROACHES

The solution presented in this paper has been successfully used by Lur'e[S] for the
axi-symmetric problems of a cylinder. Boussinesq's solution has also been used in ([5], p. 391);
this solution has an advantage of having z multiplying one harmonic function, an example
where this is used to its advantage can be found in [9]. An alternative form given by Sadowski
has been fruitful in the variational approach to the end problem of a cylinder{7]. Also the
biharmonic (stress) function derived by Love is familiar and is adopted in standard texts, such
as [10]. The use of Hankle transforms to reduce the axisymmetric form of the biharmonic
equations to an ordinary differential equation in the axial dimension is extensively discussed in
Sneddon{11].

A simple guide in choosing a particular solution for a given probelm can be expressed as; (a)
Compatibility conditions being satisfied. (All the methods considered above do meet this
requirement.) (b) Simplicity of the form of the solution. (c) Separation of a dimension from the
rest. (d) Ease of adopting the solution form to a particular method (as illustrated in [7]).

Further discussion on the relative values of different methods can be found in Klemm and
Little{8]. A full discussion of the choice of these methods would be very involved and is
outside the scope of this paper.
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8. CONCLUSIONS

When the conditions for the omission of &, (see Ref.[2]) are satisfied displacements in
torsion-free axi-symmetric problems are expressible in terms of two functions aor, z) and
b(r, z) in the manner specified by (1.4) and (1.5). The conditions for this representation are thus
more restricted than the corresponding ones for Boussinesq representation.

The various representations of [(1.4) and (1.5)], of [(4.1) and (4.2], of Boussinesq and of
Love are all interconnected. When the transformation between any two of the forms is
possible, these two forms are equivalent and if one is complete, so is the other. Thus for
displacements which are expressible in more than one of the equivalent representations, the
choice of one over the others depends only on its convenience.
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